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1 Equivalences, Cayley’s Theorem, and More Limits

1.1 Equivalence of categories

Definition 1.1. An equivalence of categories I' : C — D with a quasi-inverse G :
D — C is a pair of functors such that there exist natural isomorphisms 7 : F o G — idp
and ' : Go F — ide.

Definition 1.2. A natural isomorphism 7 is a natural transformation such that 74 is
an isomorphism for each A.

Example 1.1. Let C be the category with Obj(C) = {A} and Hom¢ (A, A) = idy4, and let
C be the category with objects B,C and morphisms f: B — C, g: C — B, idp, and id¢
such that fog =1idc and go f =idg. Let F': C — D be F(A) = B with F(id4) = idp,
and let G: D — C be G(B) = G(C) = A and G(h) = idy4 for all h. Then G o F(A) = A,
G o F(id4) = id4, and you can check that n: G o F' — id¢ given by n4 = id4 is a natural
isomorphism.

1.2 Cayley’s theorem
Let C be a small category, and let h¢ : C — Fun(C°, Set) be

h¢(B) = h® = Home(-, B)
and for f: B — C, h°(f) : h® — h® sends g € Hom¢(A, B) — fog.
Lemma 1.1 (Yoneda). h€ is fully faithful.

Definition 1.3. The symmetric group on X, Sy, is the set of bijections from X to X
with function composition. We call S, =S¢y ).

Theorem 1.1 (Cayley). Every group G is isomorphic to a subgroup of Sg.



Proof. Let G be the category of the group GG, where there is one object, and the group
elements of G are morphisms. h® : G — Fun(G,Set) is fully faithful. What is this
functor? h®(G) = h = Hom(-, G), and h®(g) : h% — A", where

h€(g9)a : h%(G) — hY(G),

~——
=G
and
p=h%()g: G — Maps(G,G).
Note that

plgh) = hE(gh)c = (h€(g) o hE(h)) = p(g)p(h),
ple) = idg,
ide = ple) = plgg™") = plg)o(g™"),
so p(g) € Sg. So p: G — S is a homomorphism. It is injective because if p(g) = p(h),
then h®(g)q = h®(h)g, so h®(g) = h®(h). By Yoneda’s lemma, g = h because h® is
faithful. O

1.3 Completeness

Definition 1.4. A category is complete if it admits all limits. A category is cocomplete
if it admits all colimits.

Proposition 1.1. Set is complete and cocomplete.
Proof. Here is a sketch. Let F': I — Set. Then

lim F = {(ai)m c[[FG) :V¢:i—j F(¢)(a) = a]} :

iel
colim F' = HF(Z)/ ~,
el

where ~ is the equivalence relation generated by the conditions a; ~ a; <= 3d¢ :¢ — j
such that F'(¢)(a;) = a; for every a; € F(i) and a;j € F(j). O

Remark 1.1. The same proof works for the category of groups.



1.4 Initial and terminal objects

Definition 1.5. An initial object A in a category C is any object such that for all B € C,
there exists a unique morphism f : A — B. A terminal object A in a category C is any
object such that for all B € C, there exists a unique morphism f : B — A.

Remark 1.2. If they exist, initial and terminal objects are unique up to unique isomor-
phism.

Remark 1.3. Let @ be the empty category, and let F' : @ — C. If lim F' exists, it is a
terminal object. If colim F' exists, it is an initial object.

1.5 Sequential limits and colimits

Definition 1.6. A sequential limit (or inverse limit) l&lF is a limit of the diagram

A3 f2 A2 fl A1

A sequential colimit (or direct limit) lim F is a colimit of the diagram

Al fl AQ f2 A3

Example 1.2. In CRing, Z/p"*'Z surjects onto Z/p"Z. Then lgln Z/p"Z is called the
p-adic integers Z,, where

Ly = {ai € H Z)p"Z : ap = any1  (mod p”)} .
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