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1 Equivalences, Cayley’s Theorem, and More Limits

1.1 Equivalence of categories

Definition 1.1. An equivalence of categories F : C → D with a quasi-inverse G :
D → C is a pair of functors such that there exist natural isomorphisms η : F ◦ G → idD
and η′ : G ◦ F → idC .

Definition 1.2. A natural isomorphism η is a natural transformation such that ηA is
an isomorphism for each A.

Example 1.1. Let C be the category with Obj(C) = {A} and HomC(A,A) = idA, and let
C be the category with objects B,C and morphisms f : B → C, g : C → B, idB, and idC
such that f ◦ g = idC and g ◦ f = idB. Let F : C → D be F (A) = B with F (idA) = idB,
and let G : D → C be G(B) = G(C) = A and G(h) = idA for all h. Then G ◦ F (A) = A,
G ◦ F (idA) = idA, and you can check that η : G ◦ F → idC given by ηA = idA is a natural
isomorphism.

1.2 Cayley’s theorem

Let C be a small category, and let hC : C → Fun(Cop, Set) be

hC(B) = hB = HomC(·, B)

and for f : B → C, hC(f) : hB → hC sends g ∈ HomC(A,B) 7→ f ◦ g.

Lemma 1.1 (Yoneda). hC is fully faithful.

Definition 1.3. The symmetric group on X, SX , is the set of bijections from X to X
with function composition. We call Sn = S{1,...,n}.

Theorem 1.1 (Cayley). Every group G is isomorphic to a subgroup of SG.
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Proof. Let G be the category of the group G, where there is one object, and the group
elements of G are morphisms. hG : G → Fun(Gop,Set) is fully faithful. What is this
functor? hG(G) = hG = Hom(·, G), and hG(g) : hG → hG, where

hG(g)G : hG(G)︸ ︷︷ ︸
=G

→ hG(G),

and
ρ = hG(·)G : G→ Maps(G,G).

Note that
ρ(gh) = hG(gh)G = (hG(g) ◦ hG(h))G = ρ(g)ρ(h),

ρ(e) = idG,

idG = ρ(e) = ρ(gg−1) = ρ(g)ρ(g−1),

so ρ(g) ∈ SG. So ρ : G → SG is a homomorphism. It is injective because if ρ(g) = ρ(h),
then hG(g)G = hG(h)H , so hG(g) = hG(h). By Yoneda’s lemma, g = h because hG is
faithful.

1.3 Completeness

Definition 1.4. A category is complete if it admits all limits. A category is cocomplete
if it admits all colimits.

Proposition 1.1. Set is complete and cocomplete.

Proof. Here is a sketch. Let F : I → Set. Then

limF =

{
(ai)i∈I ∈

∏
i∈I

F (i) : ∀φ : i→ j, F (φ)(ai) = aj

}
.

colimF =
∐
i∈I

F (i)

/
∼,

where ∼ is the equivalence relation generated by the conditions ai ∼ aj ⇐⇒ ∃φ : i → j
such that F (φ)(ai) = aj for every ai ∈ F (i) and aj ∈ F (j).

Remark 1.1. The same proof works for the category of groups.
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1.4 Initial and terminal objects

Definition 1.5. An initial object A in a category C is any object such that for all B ∈ C,
there exists a unique morphism f : A→ B. A terminal object A in a category C is any
object such that for all B ∈ C, there exists a unique morphism f : B → A.

Remark 1.2. If they exist, initial and terminal objects are unique up to unique isomor-
phism.

Remark 1.3. Let ∅ be the empty category, and let F : ∅ → C. If limF exists, it is a
terminal object. If colimF exists, it is an initial object.

1.5 Sequential limits and colimits

Definition 1.6. A sequential limit (or inverse limit) lim←−F is a limit of the diagram

· · · A3 A2 A1
f2 f1

A sequential colimit (or direct limit) lim−→F is a colimit of the diagram

A1 A2 A3 · · ·f1 f2

Example 1.2. In CRing, Z/pn+1Z surjects onto Z/pnZ. Then lim←−n
Z/pnZ is called the

p-adic integers Zp, where

Zp =

{
ai ∈

∞∏
n=1

Z/pnZ : an = an+1 (mod pn)

}
.
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